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A new X-ray dynamical diffraction theory that can deal with n-beam cases

comprehensively (n 2 {3, 4, 6, 8, 12}) has been derived based on the Takagi±

Taupin dynamical theory. The new theory takes into account correctly the

effects of arbitrarily polarized incident X-rays and the polarization states of

X-ray wave®elds in a crystal. Furthermore, an arbitrary lattice displacement in

the crystal can be dealt with. The new theory has a high symmetry and therefore

can be written with one equation supposing that suf®xes are taken in 2n ways,

where the suf®xes indicate ordinal numbers of waves and polarization states.

This simplicity of the theory enables a computer program to solve the equations

to be coded easily. A method to solve the theory numerically is also described.

`Six-beam X-ray section topographs' computer simulated based on the new

theory are also presented.

1. Introduction

After Laue's great work in 1912, Darwin (1914a,b), Ewald

(1917) and Laue (1931) constructed the X-ray dynamical

diffraction theories. Since the late 1950's when the technolo-

gies to grow almost perfect silicon crystals were developed, the

two-beam X-ray dynamical diffraction theories and related

physics have attained signi®cant growth to date as is reviewed

e.g. by Authier & Malgrange (1998) and Authier (2001).

Nowadays, the widespread theory called the Ewald±Laue

theory (Laue, 1931) is regarded as the general two-beam X-ray

dynamical diffraction theory for a perfect crystal. Among a

great quantity of theoretical works, however, a theory derived

by Takagi (1962, 1969) and Taupin (1964) is worthy of special

mention. In this theory, wave®elds of X-rays in a crystal are

represented by partial differential equations in the real space

of the crystal. The Takagi±Taupin equations can deal with

X-ray wave®elds in an arbitrarily distorted crystal. The

approximation used when deriving the Takagi±Taupin equa-

tions is excellent so that X-ray wave®elds in crystals with

practically all kinds of defects can be described (HaÈrtwig,

2001). Based on the Takagi±Taupin equations, Kato (1976a,b,

1979, 1980a,b,c) presented a theory that can deal with X-ray

wave®elds in a crystal including random lattice distortion

using a statistical procedure for the purpose that dynamical

diffraction phenomena in a mosaic crystal can be discussed.

On the other hand, since the early age of X-ray diffraction

physics, X-ray multibeam diffraction (Wagner, 1920; Berg,

1926; Schachenmeier, 1923; Cauchois et al., 1937), in which

more than two waves are strong in a crystal, has attracted

much attention for a long time. Several authors extended the

Ewald±Laue two-beam dynamical theory to multibeam

diffraction (simultaneous re¯ection) cases (Mayer, 1928;

Weigle & MuÈ hsam, 1937; Blanc & Weigle, 1937; Renninger,

1937; Ewald & HeÂno, 1968). Such phenomena as Aufhellung

and Umweganregung owing to the X-ray multibeam diffrac-

tion cases were qualitatively explained in the above works.

However, the multibeam diffraction dynamical theories

mentioned above are still dif®cult even for recent scientists to

solve the equations. This situation is mainly due to the dif®-

culty in dealing with the effects of polarization of X-ray

wave®elds.

Incidentally, Ott (1938), Bijvoet & MacGillavry (1939) and

Lipscomb (1949) pointed out for the ®rst time, independently,

that X-ray intensity pro®les in the vicinity of a three-beam

diffraction case depend on the structure-factor phase (triplet

phase invariant). Since an experimental work was published

by Colella (1974), this candidate for a method to solve the

phase problem in X-ray crystal structure analysis has come to

be recognized by several authors (Post, 1977, 1979; Shen, 1986;

Chang, 1986; Weckert et al., 1993) and is in progress even at

the present time (Weckert & HuÈ mmer, 1997, 1998; Thor-

kildsen & Larsen, 1998; Larsen & Thorkildsen, 1998; Stetsko

et al., 2001). While the dependence of structure-factor phases

on the X-ray intensity pro®les when the multibeam diffraction

occurs is a dynamical diffraction effect, real crystals whose

structures have to be analyzed are mosaic crystals but not

perfect enough to be dealt with directly by the dynamical

theory. Therefore, if Kato's procedure to deal with the random

lattice distortion is applied to a Takagi±Taupin-type dynamical

theory extended to the cases of multibeam re¯ection, the

derived theory may be able to deal with the correlation

between the multibeam X-ray diffraction pro®le and the phase

problem of mosaic crystals, as is pointed out by Thorkildsen
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(1987), Thorkildsen & Larsen (1998), Larsen & Thorkildsen

(1998) and Thorkildsen et al. (2001). The above authors solved

a Takagi±Taupin-type dynamical theory extended to the three-

beam case in which, however, the effects of polarization are

neglected (Thorkildsen, 1987). This situation related to the

multibeam cases and the phase problem has been reviewed by

Authier (2001).

As is well known, electromagnetic waves have the features

of polarization since the wave equation derived from the

Maxwell equations with a condition that div D�r� � 0 reveals

the transversality of electromagnetic waves, where D�r� is the

oscillatory component of the electric displacement vector. As

described by Takagi (1969), his fundamental equation of

dynamical diffraction appearing as equation (6) in the present

paper has been considered for 40 years to be extremely

dif®cult to solve in the n-beam cases, owing to the transvers-

ality of X-rays. In the present paper, a new theory based on the

Takagi±Taupin dynamical theory is described, which can deal

with the n-beam case (n 2 f3; 4; 6; 8; 12g) dynamical diffrac-

tion comprehensively in a crystal including arbitrary lattice

displacements, without neglecting the effect of polarization.

The new theory can be written with a partial differential

equation whose suf®xes are taken in 2n ways. The high

symmetry of the equation enabled the present author to code

a computer program to solve the new theory numerically.

2. Derivation of theory

2.1. Definition of `n-beam cases'

First, let us specify the number n in the `n-beam' dynamical

diffraction theory discussed in the present paper. Fig. 1 shows

schematically a condition in the three-dimensional reciprocal

space in which the three-beam diffraction condition is satis-

®ed. Fig. 1 also shows N�1�o (rectangle PQB�1�o A�1�o ), N
�2�
1

(rectangle PQB
�2�
1 A

�2�
1 ) and N

�o�
2 (rectangle PQB

�o�
2 A

�o�
2 ), which

are perpendicular bisector planes of line segments H0H1,

H1H2 and H2H0, respectively. Here, H0 is the origin of the

reciprocal space. H1 and H2 are reciprocal-lattice points. Q is

the circumcenter of triangle H0H1H2. P is the starting point of

X-ray wavevectors PH0

��!
, PH1

��!
and PH2

��!
when the simultaneous

re¯ection condition is completely satis®ed. These planes N�1�o ,

N
�2�
1 and N

�o�
2 cross with one another at a line PQ which is

normal to the plane H0H1H2 in Fig. 1. Fig. 2 is a schematic

drawing in the three-dimensional real space showing that

X-rays transmitted through a pinhole are incident on a crystal

in which three wave®elds are excited and are propagated in

the directions EoSo

��!
(forward-diffracted beam), EoS1

��!
and EoS2

��!
.

When performing an experiment as shown in Fig. 2, the inci-

dent X-rays even somewhat monochromated and collimated

should be considered to have nonzero energy spread and

angular divergence, that is the starting point of the wavevector

in Fig. 1 is considered to be located near P. When the starting

point of the wavevector of the incident X-rays (hereafter

referred to as P1) is located in the vicinity of the line PQ,

wave®elds are excited in a triangular pyramid whose apex is

Eo and whose base is the triangle SoS1S2 in Fig. 2. Hereafter,

this case is referred to as case (A). When P1 is apart from PQ

but is located in the vicinity of the planes N�1�o or N
�o�
2 in Fig. 1,

the incident X-rays excite wave®elds in triangles EoSoS1 or

EoS2So in Fig. 2, respectively. Hereafter, these circumstances

are referred to as cases (B1) and (B2). After diffraction in the

crystal, the three wave®elds located in the triangle SoS1S2 in

Fig. 2 propagate in the directions of EoSo

��!
, EoS1

��!
and EoS2

��!
and

follow separate paths. They are recorded on a two-dimen-

sional X-ray detector. X-ray intensity photographs of three-

beam cases [case (A)] are recorded on planar areas inside

triangles S0oS01S02�EoSo

��!�, S0oS01S02�EoS1

��!� and S0oS01S02�EoS2

��!�, which

are projections of SoS1S2 on the two-dimensional detector in

the directions of EoSo

��!
, EoS1

��!
and EoS2

��!
, respectively. Hereafter,

X 0�EoSi

��!� means projection of X on the two-dimensional

detector in the direction of EoSi

��!
, where X is a line segment or

a point. The two-beam X-ray intensities corresponding to the

re¯ection vector H0H1

���!
only [case (B1)] are recorded on edge

lines S0oS01�EoSo

��!� and S0oS01�EoS1

��!�. X-ray intensities by only

H0H2

���!
[case (B2)] are recorded on edge lines S0oS02�EoSo

��!� and

S0oS02�EoS2

��!�. When P1 is located away from the planes N�1�o or

N
�o�
2 in Fig. 1, diffraction does not occur and X-rays just

Figure 1
A schematic drawing in the reciprocal space showing that an incident
X-ray beam whose wavevector is PH0

��!
is simultaneously re¯ected by

re¯ection vectors H0H1

���!
and H0H2

���!
.

Figure 2
A schematic drawing in the real space showing a `three-beam X-ray
section topography' experiment. An X-ray beam completely polarized in
an arbitrary polarization state is incident on a crystal at point Eo.



absorbed in the crystal give the transmitted X-ray intensity at

a point S0o�EoSo

��!�. This case is hereafter referred to as case (C).

When P1 has a somewhat broad distribution, cases (A), (B)

and (C) can occur simultaneously. What is important is that

the X-ray intensities due to cases (A), (B) and (C) can be

observed separately on the two-dimensional detector. In the

experiment as shown in Fig. 2, a planar intensity pro®le due to

case (A) can be observed separately from cases (B) and (C). In

the present paper, equations describing case (A) are derived,

the results calculated from which can be compared with the

results of the experiment as shown in Fig. 2.

Fig. 3 shows schematically a four-beam case in the recip-

rocal space. H0 is the origin of the reciprocal space. H1, H2 and

H3 are reciprocal-lattice points. H0H1H2H3 is a rectangle

whose center is Q. Line PQ is normal to the plane of

H0H1H2H3. Similarly to the case of Fig. 1, when the starting

point of the wavevector of the incident X-rays, P1 is located in

the vicinity of line PQ, the simultaneous diffraction case in

which four waves are simultaneously strong in the crystal [case

(A)] can occur. On the other hand, Fig. 4 shows schematically

a situation where a reciprocal point H 03 is on an Ewald sphere

by chance at a particular photon energy in the condition that

H0, H1 and H2 are on the Ewald sphere. H0H1H2H03 is not a

rectangle. In the present paper, this case is not dealt with as a

four-beam case. In this case, since line PQ as shown in Fig. 3

cannot be de®ned for H0H1H2H 03, which is not coplanar, three-

beam cases due to triangles in the reciprocal space H0H1H2,

H0H2H03 and H0H 03H1 are considered to occur independently.

In a cubic crystal, the n-beam cases for which line PQ as shown

in Figs. 1 and 3 exists for the n reciprocal-lattice points

(including the origin H0) are cases of n 2 f3; 4; 6; 8; 12g. The

number n was discussed by Burbank (1965) for any crystal

system. These cases in which case (A) can occur for the n

reciprocal-lattice points are discussed comprehensively in the

present paper.

2.2. Definition of the Laue and Lorentz points for an n-beam
case

Now, the Laue and Lorentz points have to be de®ned for

later discussion. In this paper, the Laue point La whose

location vector is La is de®ned to be a point whose distance

from the reciprocal-lattice points H0;H1; . . . ;Hnÿ1 is the

common real value K. H0 is the origin of the reciprocal space.

The position vector of Hi is Hi, where i 2 f0; 1; . . . ; nÿ 1g.
K � 1=� is the wavenumber of the incident X-ray beam in

vacuum. The Lorentz point Lo whose position vector is Lo

is de®ned to be a point whose distance from points

H0;H1; . . . ;Hnÿ1 is the identical value jK�1� 1
2�o�j, where �o

is the zeroth-order Fourier component of electric suscep-

tibility in the crystal. Let us now more clearly de®ne the

Lorentz point Lo using the points H0;H1; . . . ;Hnÿ1;P and Q.

The angles �QPHi obviously have the same value, which is

hereafter referred to as ��Max�
B . Here, let us de®ne a complex

vector LaLo
���!� �k as follows:

LaLo
���!� �k �1�

� ÿ1
2�oK PQ

�!�jPQ
�!j cos ��Max�

B

h i
�2�

� �1ÿ no�K PQ
�!�jPQ

�!j cos ��Max�
B

h i
: �3�

Here, no is the refractive index of the crystal. Therefore, the

Lorentz point Lo is de®ned as follows:

Lo � La� LaLo
���! �4�

� Laÿ 1
2�oK PQ

�!�jPQ
�!j cos ��Max�

B

h i
: �5�

2.3. Notations used in Takagi's article and the present paper

The notations used in Takagi's article (Takagi, 1969) are

changed for convenience in the present paper according to

Table 1 which summarizes the notations used in Takagi (1969)

and in the present paper. The meaning of these notations will

be explained when they appear for the ®rst time.
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Figure 3
A schematic drawing in the reciprocal space showing that a four-beam
simultaneous diffraction condition is satis®ed. Vector PH0

��!
is the

wavevector of the incident X-rays. Vector PH1

��!
, PH2

��!
and PH3

��!
are

wavevectors of the simultaneously diffracted X-rays. When the `n-beam
case' discussed in the present paper is satis®ed, H0;H1; . . . ;Hnÿ1 have to
be coplanar.

Figure 4
A schematic drawing showing that H0, H1, H2, H 03 are located on an
Ewald sphere whose center is P. This case is not discussed as a `four-beam
case' in the present paper.
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2.4. Transformation of Takagi's fundamental equation of
dynamical diffraction

Equation (39) in Takagi's article (Takagi, 1969) describes

the fundamental equation of X-ray diffraction in a distorted

crystal as follows:

�si � grad�D0i�r� � i2�K�0i�r�D0i�r� ÿ i�K
P
j6�i

�hiÿhj
D0j�r�
� �

si
: �6�

Here, si is a unit vector in the direction of Ki � K0 � hi, where

K0 and hi are the wavevector of incident X-rays in a vacuum

and a reciprocal-lattice vector, respectively. D0i�r� is a complex

electric displacement vector whose wavevector in the crystal is

Ki ÿ�kÿ grad�hi � u�r��. �hiÿhj
is the (hi ÿ hj)-order Fourier

component of electric susceptibility in the crystal. �D0j�r��si
is a

vector component of D0j�r� perpendicular to si, that is

�D0j�r��si
� ÿsi � �si �D0j�r��:

�0i�r� is given by

�0i�r� � �i ÿ �1=K�@�hi � u�r��=@si: �7�

Here, u�r� is a lattice displacement vector. Parameter �i was

de®ned by Takagi (1969) and represents the angular deviation

of the incident X-ray beam from the strict Bragg condition.

However, even if �i is ®xed at zero for mathematical con-

venience, the generality of the fundamental equation (6) does

not collapse. Then,

�0i�r� � ÿ�1=K�@�hi � u�r��=@si; where �i � 0:

Appendix A describes that the ®nal form of the present theory

(39) derived under the condition that �i is zero can be solved

even when plane-wave X-rays whose wavevector deviates

from LaH0

���!
are incident on a crystal. Now, we can rewrite (6) as

follows:

�si � grad�D0i�r� � ÿi2�f@�hi � u�r��=@sigD0i�r�
ÿ i�K

P
j 6�i

�hiÿhj
�D0j�r��si

: �8�

On the other hand, the whole electric displacement vector in

the crystal D�r� is de®ned by equation (30) in Takagi's article

(Takagi, 1969) as follows:

D�r� �P
g

D0g�r� expfÿi2��kg � rÿ g � u�r��g:

In Takagi's article,
P

g, D0g, kg and g are distinguished fromP
h, D0h, kh and h. However, after integration with respect to r

over a unit cell, the above equation turns out to be the same as

an equation using h in place of g. Therefore, according to

Table 1, we obtain

D�r� �P
i

D0i�r� expfÿi2��ki � rÿ hi � u�r��g: �9�

Here, ki is LoHi

���! �� Ki ÿ�k�. The above equation (9) can be

transformed to

D�r� �P
i

Di�r� exp�ÿi2�ki � r�; �10�

where

Di�r� � D0i�r� exp��i2�hi � u�r��: �11�
Substituting i by j, we get

Dj�r� � D0j�r� exp��i2�hj � u�r��: �12�
Substituting (11) and (12) into (8), we obtain

�si � grad�fDi�r� exp�ÿi2�hi � u�r��g
� ÿi2�f@�hi � u�r��=@sigDi�r� exp�ÿi2�hi � u�r��
ÿ i�K

P
j 6�i

�hiÿhj
�Dj�r��si

exp�ÿi2�hj � u�r��: �13�

The left-hand side of (13) is transformed to

�si � grad�fDi�r� exp�ÿi2�hi � u�r��g
� ��si � grad�Di�r�� exp�ÿi2�hi � u�r��
�Di�r�f@�hi � u�r��=@sig�ÿi2�� exp�ÿi2�hi � u�r��: �14�

Substituting (14) into the left-hand side of (13), we obtain

�si � grad�Di�r�
� ÿi�K

P
j 6�i

�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r���Dj�r��si

: �15�

Equation (15) is a form of the fundamental equation of X-ray

dynamical diffraction theory, based on which ®nal equations

(25) and (39) will be derived in xx2.5 and 2.6.

2.5. Scalar expansion of the fundamental equation and
definition of polarization factors

In order to solve (15), the vectors Di�r� and Dj�r� must be

decomposed with respect to a set of unit vectors. For example,

let us consider a hexagonal pyramid as shown in Fig. 5. The

direction of unit vector si is parallel to Ki. Another set of

vectors, ei and e�i�1�0 is de®ned as follows:

Table 1
Notations in Takagi's article (Takagi, 1969) are changed according to this
table for convenience for discussions in the present paper.

Notations g,
P

g, D0g and kg are distinguished from h,
P

h, D0h and kh in Takagi
(1969). However, since g,

P
g, D0g and kg turn out to be the same as h,

P
h, D0h

and kh after integration with respect to r over a unit cell, the table does not
summarize notations including `g'. D0i�r�, �D0j�r��si

and �0i�r� specify explicitly
that these parameters are functions of the position vector r.

Notations in
Takagi (1969)

Notations
in the present
paper Type of notation [Dimension]

D0h D0i�r� Complex vector [A s mÿ2]
�D0h0 �h �D0j�r��si

Complex vector [A s mÿ2]
h hi Real vector [mÿ1]
h0 hj Real vector [mÿ1]
kh ki Complex vector [mÿ1]
Kh Ki Real vector [mÿ1]
@=@sh @=@si Differentiation in

the real space
[mÿ1]

sh si Real unit vector [No dimension]
�h �i Complex scalar [No dimension]
�0h �0i�r� Complex scalar [No dimension]
�hÿh0 �hiÿhj

Complex scalar [No dimension]



ei �
s�iÿ1�0 � si

js�iÿ1�0 � sij
; e�i�1�0 �

si � s�i�1�0

jsi � s�i�1�0 j;
where �iÿ 1�0 and �i� 1�0 are mod�iÿ 1; n� and mod�i� 1; n�,
respectively, that is the remainder of �iÿ 1� and �i� 1� when

divided by n. Therefore, when i � 0, �iÿ 1�0 is nÿ 1. When

i � nÿ 1, �i� 1�0 is zero. Evidently, ei is perpendicular to si

and s�iÿ1�0 . In order to derive scalar equations equivalent to the

fundamental equation (15), Di and Dj are written as follows:

Di�r� � D
�0�
i �r�ei �D

�1�
i �r�e�i�1�0 ; �16�

Dj�r� � D
�0�
j �r�ej �D

�1�
j �r�e�j�1�0 : �17�

Here, D
�0�
i �r�, D

�1�
i �r�, D

�0�
j �r� and D

�1�
j �r� are scalar values of the

electric displacement. Appendix B validates that the electric

displacement vectors can be expanded in a combination of

scalar components whose unit vectors cross obliquely.

Substituting (16) and (17) into (15), we obtain

�si � grad��D�0�i �r�ei �D
�1�
i �r�e�i�1�0 �

� ÿi�K
P
j 6�i

f�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r��

� �D�0�j �r�ej �D
�1�
j �r�e�j�1�0 �si

g: �18�
Here, let us introduce a coordinate system with unit vectors

si, e���i and e���i which construct an orthogonal right-handed

system in this order. e
���
i is perpendicular to PQ

�!
in Fig. 1 and

to si, then strictly de®ned by

e
���
i �

si � PQ
�!

jsi � PQ
�!j ; �19�

and e���i is de®ned by

e
���
i � si � e

���
i : �20�

Geometrical relations among si, ei, e�i�1�0 , e���i and e���i are

shown in Fig. 6. The operator grad is given by using the

si±e
���
i ±e

���
i orthogonal coordinate system as follows:

grad � @

@si

si �
@

@e���i

e
���
i �

@

@e���i

e
���
i :

Here, si, e
���
i and e

���
i are coordinate values of the position

vector r in the real space. Therefore, r is represented by a

combination of si, e
���
i and e

���
i as follows:

r � sisi � e
���
i e
���
i � e

���
i e
���
i : �21�

Then, the operator si � grad is represented as follows:

si � grad � si �
@

@si

si �
@

@e���i

e
���
i �

@

@e���i

e
���
i

 !
� @

@si

:

Therefore, the left-hand side of (18) is given by

�si � grad��D�0�i �r�ei �D
�1�
i �r�e�i�1�0 �

� @

@si

D
�0�
i �r�ei �

@

@si

D
�1�
i �r�e�i�1�0 : �22�

Here, (22) is considered to be evident. However, Appendix B

validates (22) by using the si±e
���
i ±e

���
i orthogonal coordinate

system. On the other hand, ej can be necessarily represented

by a combination of si, ei and e�i�1�0 as follows:

ej � S�j;i�si � C
�j;i�
0 ei � C

�j;i�
1 e�i�1�0 : �23�

C
�j;i�
0 and C

�j;i�
1 will turn out to be polarization factors in later

discussion. Then, �D�0�j �r�ej �D
�1�
j �r�e�j�1�0 �si

is given by

�D�0�j �r�ej �D
�1�
j �r�e�j�1�0 �si

� �D�0�j �r�C�j;i�0 �D
�1�
j �r�C��j�1�0;i�

0 �ei

� �D�0�j �r�C�j;i�1 �D
�1�
j �r�C��j�1�0;i�

1 �e�i�1�0 : �24�
Substituting (22) and (24) into (18), and comparing terms of ei

and e�i�1�0 , respectively, we obtain

@

@si

D
�0�
i �r� � ÿi�K

P
j6�i

f�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r��

� �C�j;i�0 D
�0�
j �r� � C

��j�1�0;i�
0 D

�1�
j �r��g;

@

@si

D
�1�
i �r� � ÿi�K

P
j6�i

f�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r��

� �C�j;i�1 D
�0�
j �r� � C

��j�1�0;i�
1 D

�1�
j �r��g:

Let l and m be l;m 2 f0; 1g, which represent polarization

states of the ith and jth waves, respectively. We obtain

@

@si

D
�l�
i �r� � ÿi�K

X
j6�i

X1

m�0

�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r��

� C
��j�m�0;i�
l D

�m�
j �r�; �25�

where

i; j 2 f0;1; . . . ; nÿ 1g; l;m 2 f0; 1g; n 2 f3; 4; 6; 8; 12g:
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Figure 5
Sets of unit vectors si and ei where i 2 f0; 1; . . . ; nÿ 1g. Here, n � 6.

Figure 6
Geometrical relation of the unit vectors si, ei, e�i�1�0 , e

���
i and e

���
i .
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Equation (25) is a ®nal form of the Takagi±Taupin theory

extended to n-beam cases. The high symmetry of (25) is

achieved by dividing the electric displacement vector Di�r�
into scalar components whose unit vectors cross obliquely as

in (16) and (17). This simplicity of (25) makes it easy to code a

computer program numerically to solve the theory.

2.6. Another form of the theory

The new theory derived in x2.5 is written as in (25). Behind

this equation, it is assumed that an X-ray wave®eld in a crystal

D�r� is represented as in (10). Rewriting (10) with the

limitation that i 2 f0; 1; . . . ; nÿ 1g, it follows that

D�r� � Pnÿ1

i�0

Di�r� exp�ÿi2�ki � r�: �26�

Since the starting point of wavevector ki is ®xed at the Lorentz

point, (26) is transformed to

D�r� � Pnÿ1

i�0

Di�r� exp�ÿi2��Ki ÿ�k� � r�

� Pnÿ1

i�0

D00i �r� exp�ÿi2�Ki � r�; �27�

where

D00i �r� � Di�r� exp��i2��k � r�: �28�
Now, let us represent D00i �r� by a combination of scalar

components whose unit vectors are ei and e�i�1�0 as follows:

D00i �r� � D
00�0�
i �r�ei �D

00�1�
i �r�e�i�1�0 : �29�

Here, D
00�0�
i �r� and D

00�1�
i �r� are scalar values of the electric

displacement. Substituting (16) into (28), we get

D00i �r� � �D�0�i �r�ei �D
�1�
i �r�e�i�1�0 � exp��i2��k � r�: �30�

Comparing (29) and (30), we ®nd

D
�l�
i �r� � D

00�l�
i �r� exp�ÿi2��k � r�; �31�

where l 2 f0; 1g:
Using a similar procedure,

D
�m�
j �r� � D

00�m�
j �r� exp�ÿi2��k � r�; �32�

where m 2 f0; 1g:
Substituting (31) and (32) into (25), we obtain

@

@si

�D00�l�i �r� exp�ÿi2��k � r��

� ÿi�K
X
j 6�i

X1

m�0

f�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r��

� C
��j�m�0;i�
l D

00�m�
j �r� exp�ÿi2��k � r�g: �33�

On the other hand, referring to Figs. 1 and 6,

PQ
�!

=jPQ
�!j � �cos ��Max�

B �si ÿ �sin ��Max�
B �e���i : �34�

Substituting (34) into (1) and (2), we get

�k � ÿ1
2�oKsi � �tan ��Max�

B =2��oKe
���
i : �35�

exp�ÿ2�i�k � r� is calculated from (21) and (35) to be

exp�ÿ2�i�k � r� � exp��i��oKsi ÿ i��oK tan ��Max�
B e

���
i �:

Therefore, the left-hand side of (33) is represented as follows:

@

@si

�D00�l�i �r� exp�ÿi2��k � r��

� @

@si

D
00�l�
i �r�

� �
exp�ÿi2��k � r�

�D
00�l�
i �r�i��oK exp�ÿi2��k � r�: �36�

Substituting (36) into the left-hand side of (33) and dividing

both sides by exp�ÿi2��k � r�, we obtain

@

@si

D
00�l�
i �r� � i��oKD

00�l�
i �r�

� ÿi�K
X
j 6�i

X1

m�0

�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r��

� C
��j�m�0;i�
l D

00�m�
j �r�: �37�

Here, considering polarization factors according to (23) when

j � i and j � �i� 1�0, we obtain

C
�i;i�
0 � 1; C

�i;i�
1 � 0

and

C
��i�1�0;i�
0 � 0; C

��i�1�0;i�
1 � 1:

Therefore, the second term of the left-hand side of (37) can be

written as follows:

i��oKD
00�l�
i �r� � i��oK�C�i;i�l D

00�0�
i �r� � C

��i�1�0;i�
l D

00�1�
i �r��

� i��oK
P1

m�0

�C��i�m�0;i�
l D

00�m�
i �r��: �38�

Substituting (38) into (37), we obtain

@

@si

D
00�l�
i �r� � ÿi�K

Xnÿ1

j�0

X1

m�0

�hiÿhj
exp�ÿi2��hj ÿ hi� � u�r��

� C
��j�m�0;i�
l D

00�m�
j �r�; �39�

where

i; j 2 f0;1; . . . ; nÿ 1g; l;m 2 f0; 1g; n 2 f3; 4; 6; 8; 12g:
Equation (39) is another form of the theory.

3. Methodology for solving the theory

The method described here to solve the equations is funda-

mentally the same as described in Takagi's article (Takagi,

1962). By using the Takagi±Taupin equations, Balibar &

Authier (1967) and Taupin (1967) published important works

in which dislocation images in X-ray section topographs were

numerically calculated and compared with experimental

results. Following these studies, Epelboin (1985, 1987)

reviewed simulation works based on Takagi±Taupin equations

and dealing with the images on X-ray section topographs of

such defects as dislocations and/or stacking faults. X-ray

section topograph images of strain centers inside and outside



the Borrmann fan were computer simulated and compared

with experimental results by Green et al. (1990) and by Okitsu

et al. (1992), respectively, for the ®rst time.

To solve (39), for example, in a six-beam case, a crystal has

to be three-dimensionally divided into hexagonal pyramids

suf®ciently small compared with the extinction length of the hi

re¯ection as shown in Fig. 7. When using (39) but not (25),

jR�0�i R�1�
����!

j has to be small compared with 1=��oK�, which is the

extinction length of the h0 re¯ection (forward diffraction). In

Fig. 7, R
�0�
i R�1�
����!

is parallel to the direction of si. When (39) is

satis®ed for the wave®elds D
00�l�
i �r� (l 2 f0; 1g) in the crystal,

the following equation has to be satis®ed approximately at

Rmi, which is the middle point between R
�0�
i and R�1�

D
00�l�
i �R�1�� ÿD

00�l�
i �R�0�i �

jR�0�i R�1�
����!

j

� ÿi�K
Xnÿ1

j�0

X1

m�0

�
�hiÿhj

exp�ÿi2��hj ÿ hi� � u�Rmi��

� C
��j�m�0;i�
l

D
00�m�
j �R�0�i � �D

00�m�
j �R�1��

2

�
: �40�

Here, D
00�l�
i �R�0�i � and D

00�l�
i �R�1�� are complex electric displace-

ments of X-rays at points R
�0�
i and R�1� whose wavevector is Ki

and polarization state is l. u�Rmi� is the lattice displacement

vector at Rmi. For 2n values of the electric displacement to be

calculated from 2n2 known values, the number of equations

written as in (40) is 2n. The simultaneous linear equations (40)

can be solved by using a 2n� 2n matrix calculation. For

solving (40) in the case of an `n-beam X-ray section topo-

graph' experiment as shown in Fig. 2, a boundary condition

can be given so that D
00�0�
0 �Eo� and D

00�1�
0 �Eo� are nonzero values

only at the incident point Eo in Fig. 2, resulting in D
00�l�
i of

nonzero values only inside the pyramid whose apex is Eo and

base is n-angular polygon SoS1 . . . Snÿ1 as shown in Fig. 2. The

amplitude ratio and phase difference of D
00�0�
0 �Eo� and

D
00�1�
0 �Eo� depend on the polarization state of the incident

X-rays. The solution of (40), D
00�0�
i �Re� and D

00�1�
i �Re�, may be

transformed into D
00���
i �Re� and D

00���
i �Re� by using (50) and

(51) in Appendix B, where Re is a position in the n-angular

polygon S0S1 . . . Snÿ1 on the exit surface of the crystal. The

intensities and polarization states of outgoing X-rays are

obtained from D
00���
i �Re� and D

00���
i �Re�.

The electric displacement and polarization state of outgoing

X-rays when rotating two-dimensionally a perfect crystal

around the Bragg condition with incidence of plane-wave

X-rays perfectly polarized can be obtained by Fourier trans-

forming D
00���
i �Re� and D

00���
i �Re� calculated for a perfect

crystal. This is a transformation inverse to the procedure

which is used when Kato derived the spherical-wave dy-

namical theory (Kato, 1961a,b, 1968a,b). Therefore, the

Renninger scans (Renninger, 1937) can also be calculated

from Fourier transform of D
00���
i �Re� and D

00���
i �Re�, which is

applicable to obtaining the phase information of crystal

structure factors.

There is an important reason why (39) is obtained in x2.6 by

transforming (25). The difference between (39) and (25) is that

�o is explicitly included in the right-hand side of the equation.

By taking advantage of this feature of (39), X-ray wave®elds in

a complex geometry can be numerically calculated with a

simple procedure even if the Laue and Bragg geometries are

mixed or some objects whose complex refraction index is

n�r� � n�r��r� � in�i��r� exists in the X-ray path. The procedure

to deal with such a complex geometry will be discussed in a

forthcoming separate paper (Okitsu, 2003).

4. Computer-simulated results based on the new theory

The present author has computer-simulated `six-beam X-ray

section topographs' whose arrangement is assumed as shown

in Fig. 8. A �1�11�-oriented parallel-sided perfect silicon crystal

with a thickness of 9.911 mm (which the present author has

used in an experiment) was assumed to be adjusted so that 000

(forward diffraction), 440, 484, 088, �448 and �404 re¯ections

simultaneously occurred. The X-ray photon energy was
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Figure 7
To solve the theory described in (25) or (39), a crystal has to be three-
dimensionally divided into suf®ciently small wedges. This is a six-beam
case.

Figure 8
Examples of simulations Figs. 9(a) and 9(b) were calculated assuming an
arrangement shown in this ®gure. The wavefront of the incident X-rays
was assumed to be limited to a suf®ciently small size by a slit system. The
plane of incidence of the 088 re¯ection was assumed to be perpendicular
to vector ex drawn in the ®gure.



research papers

242 Kouhei Okitsu � Takagi±Taupin dynamical theory Acta Cryst. (2003). A59, 235±244

assumed to be 18.5 keV (0.670 AÊ wavelength and 44:27� Bragg

angle for 088 re¯ection). The crystal was divided into 2000

layers with identical height in the direction of thickness. Every

layer was divided into small hexagonal pyramids as shown in

Fig. 7. The ridgeline length of the small pyramid corre-

sponding to jR�0�i R�1�
����!

j in (40) was about 6.92 mm. This situation

barely satis®ed the condition that jR�0�i R�1�
����!

j was suf®ciently

small compared with 1=��oK� (= 23.7 mm). X-ray wave®elds

were located in the hexagonal `Borrmann pyramid' whose

apex is the X-ray incident point on the entrance surface of the

crystal.

Fig. 9 shows computer-simulated `six-beam X-ray section

topographs' which were expected to appear on an imaging

plate shown in Fig. 8. Figs. 9(a) and 9(b) were obtained under

the assumptions of the incident X-rays linearly polarized in

the directions of ex � ey and ÿex � ey, respectively, shown in

Fig. 8. Bladed patterns are observed approximately perpen-

dicular to the direction of ex � ey in 000 and �448 images in Fig.

9(a) whereas such patterns are approximately perpendicular

to the direction ofÿex � ey in 000 and 484 images in Fig. 9(b),

which reveals that the polarization effect was probably dealt

with correctly in the computer program coded based on (39)

and (40). Experimental results in excellent agreement with

computer-simulated images will be presented in a forthcoming

separate paper (Okitsu et al., 2003).

5. Conclusions

A real-space n-beam X-ray dynamical diffraction theory based

on the Takagi±Taupin theory has been derived, where

n 2 f3; 4; 6; 8; 12g. The ®nal equations (25) and (39) can be

written in a simple form owing to the high symmetry of the

equations. The dif®culty of dealing with the effect of polari-

zation has been overcome by dividing the electric displace-

ment vectors into scalar components whose unit vectors cross

obliquely. The derivation of the present theory is now

opportune for the present age when X-ray phase retarders

have been developed (Hirano et al., 1991, 1992, 1993, 1995;

Giles, Malgrange, Goulon, de Bergevin, Vettier, Dartyge et al.,

1994; Giles, Malgrange, Goulon, de Bergevin, Vettier,

Fontaine et al., 1994; Giles et al., 1995) for obtaining an arbi-

trary polarization state of the X-rays with a high degree of

polarization (Okitsu et al., 2001, 2002). A computer program

to solve the theory has been developed by the present author.

The program is applicable for any n-beam case

(n 2 f3; 4; 6; 8; 12g) with several minor changes.

APPENDIX A
Consideration of the boundary condition for the
incidence of plane-wave X-rays that deviate from the
Bragg condition

The aim of the present paper is to give a simple form of

Takagi±Taupin-type n-beam dynamical theory with a high

symmetry so that the theory can be solved analytically or by

using a computer. For this purpose, the Lorentz point is

de®ned as described in (1)±(5). In Takagi's articles (Takagi,

1962, 1969), the starting point of wavevector ki is not neces-

sary at the Lorentz point; parameter �i de®nes the deviation

from this point. �0i�r� is de®ned by (7). However, even if �i is

zero, the generality of (6) does not collapse. Therefore, the

®nal equations (25) and (39) are deduced from (8). Equation

(39) can be solved even when plane-wave X-rays that deviate

from the n-beam Bragg condition are incident on a crystal.

The method to solve (39) in this case is described in the

following paragraph.

Equation (39) is derived under the assumption that an

X-ray wave®eld D�r� is represented as in (27). To solve (39), a

boundary condition D000�re� has to be given so that the inci-

dence condition of X-rays is correctly re¯ected on the solution

of (39), where re is a location vector on the entrance surface of

the crystal. Here, what is important for the generality of (39)

derived with the wavevector Ki in (27) being ®xed at LaHi

��!
is

that a boundary condition D000�re� can properly be given when

Figure 9
Photographs computer simulated by using the technique described in x3
assuming the six-beam case shown in this ®gure. White arrows
approximately show the directions of polarization of the incident X-rays.



the wavevector of the plane-wave X-rays deviates from LaH0

���!
.

Now, let us consider a case where X-rays of electric dis-

placement D
00�d�
0 and wavevector K

�d�
0 are incident on the

crystal. Wave®eld D000�r� before the crystal is represented as

follows:

D000�r� � D
00�d�
0 exp�ÿi2�K

�d�
0 � r�: �41�

Here, considering that K
�d�
0 � K0 ÿ�K0, where �K0 is a

differential wavevector that depends on the angular deviation

of the incident X-rays from the n-beam Bragg condition, (41)

is transformed to

D000�r� � D
00�d�
0 exp��i2��K0 � r� exp�ÿi2�K0 � r�: �42�

Therefore, substituting re as r and comparing (42) with the

term with i � 0 in (27), we obtain

D000�re� � D
00�d�
0 exp��i2��K0 � re�: �43�

Equation (43) is a boundary condition that should be given for

the case that the incident plane-wave X-rays deviate from the

n-beam Bragg condition. Takagi (1962, 1969) derived his

fundamental equation in which parameters �i were introduced

to deal with the angular deviation of the incident X-rays from

the Bragg condition. On the other hand, the present author

has prepared a technique giving the boundary condition as is

described in (43) and removed the parameter �i from the

fundamental equation in order to obtain highly symmetrical

forms of the ®nal equations (25) and (39). In the usual

procedure using the dispersion surfaces derived in the Ewald±

Laue two-beam theory, four tie points (two each for � and �
polarizations) are excited along a crystal-surface normal

drawn inward from the starting point of the wavevector of the

incident X-rays. This treatment is only based on the condition

of continuity of the wavefront between inside and outside the

crystal surface, which is naturally satis®ed in the boundary

condition described as (43). The traditional procedure using

the inward drawn normal and the dispersion surfaces can only

deal with a case that the crystal surfaces are planar. On the

other hand, the boundary condition described as (43) is more

general since it can even deal with the case that the crystal

surfaces are not planar.

APPENDIX B
Validity of scalar displacements with unit vector
crossing obliquely to which the electric displacement
vectors are expanded

In x2.5, the electric displacement vectors are expanded to the

combination of scalar values as in (16). Unit vectors ei and

e�i�1�0 cross obliquely. In x2.5, (22) is considered to be evident.

Here, let us verify (22) by using the unit vectors si, e
���
i and e

���
i

which construct an orthogonal coordinate system de®ned by

(19) and (20). Di�r� can be represented as follows:

Di�r� � D
���
i �r�e���i �D

���
i �r�e���i : �44�

We obtain the following relations by referring to Fig. 6:

ei � ÿ cos�ie
���
i � sin �ie

���
i ; �45�

e�i�1�0 � cos�ie
���
i � sin �ie

���
i : �46�

Then, we also obtain the following relations by referring to

Fig. 6:

e
���
i � ÿ

1

2 cos�i

ei �
1

2 cos �i

e�i�1�0 ; �47�

e
���
i �

1

2 sin �i

ei �
1

2 sin �i

e�i�1�0 : �48�

Substituting (45) and (46) into (16), we ®nd

Di�r� � �ÿ cos �iD
�0�
i �r� � cos�iD

�1�
i �r��e���i

� �sin �iD
�0�
i �r� � sin �iD

�1�
i �r��e���i : �49�

Comparing (44) and (49), we obtain

D
���
i �r� � ÿ cos �iD

�0�
i �r� � cos �iD

�1�
i �r�; �50�

D
���
i �r� � sin �iD

�0�
i �r� � sin �iD

�1�
i �r�: �51�

In the case using the orthogonal coordinate system, the

following relation is evident:

�si � grad�Di�r� �
@

@si

Di�r�

� @

@si

D
���
i e
���
i �

@

@si

D
���
i e
���
i : �52�

Substituting (47), (48), (50) and (51) into (52), we get

�si � grad�Di�r�
� @

@si

�ÿ cos�iD
�0�
i �r� � cos �iD

�1�
i �r��

� ÿ 1

2 cos �i

ei �
1

2 cos �i

e�i�1�0
� �
� @

@si

�sin �iD
�0�
i �r� � sin �iD

�1�
i �r��

� 1

2 sin �i

ei �
1

2 sin �i

e�i�1�0
� �

� @

@si

�12 D
�0�
i �r� ÿ 1

2 D
�1�
i �r� � 1

2 D
�0�
i �r� � 1

2 D
�1�
i �r��ei

� @

@si

�ÿ 1
2 D
�0�
i �r� � 1

2 D
�1�
i �r� � 1

2 D
�0�
i �r� � 1

2 D
�1�
i �r��e�i�1�0

� @

@si

D
�0�
i �r�ei �

@

@si

D
�1�
i �r�e�i�1�0 �53�

Equation (53) veri®es the relation (22).

The present work was performed at the High-Power X-ray

Laboratory, School of Engineering, The University of Tokyo,

and is one of the activities of the Active Nano-Characteriza-

tion and Technology Project ®nancially supported by Special

Coordination Funds of the Ministry of Education, Culture,

Sports, Science and Technology of the Japan Government.

This paper is dedicated to Professor Norio Kato who passed

away 5 April 2002.
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